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ABSTRACT

Tandem mass spectrometry fragments a large number of molecules of the same peptide se-
quence into charged molecules of pre� x and suf� x peptide subsequences and then measures
mass/charge ratios of these ions. The de novo peptide sequencing problem is to reconstruct
the peptide sequence from a given tandem mass spectral data of k ions. By implicitly trans-
forming the spectral data into an NC-spectrum graph G (V , E) where V 2k 2,
we can solve this problem in O( V E ) time and O( V 2) space using dynamic program-
ming. For an ideal noise-free spectrum with only b- and y-ions, we improve the algorithm
to O( V E ) time and O( V ) space. Our approach can be further used to discover a
modi� ed amino acid in O( V E ) time. The algorithms have been implemented and tested
on experimental data.

Key words: dynamic programming, peptide sequencing, mass spectrometry, computational pro-
teomics, protein identi� cation, computational biology.

1. INTRODUCTION

The determination of the amino acid sequence of a protein is an important step toward quantifying
this protein and solving its structure and function. Conventional sequencing methods (Wilkins et al.,

1997) cleave proteins into peptides and then sequence the peptides individually using Edman degradation
or ladder sequencing by mass spectrometry or tandem mass spectrometry (McLafferty et al., 1999). Among
such methods, tandem mass spectrometry combined with high-performance liquid chromatography (HPLC)
has been widely used as follows. A large number of molecules of the same but unknown peptide sequence
are separated using HPLCs and a mass analyzer, such as a Finnigan LCQ ESI-MS/MS mass spectrometer.
They are ionized and fragmented by collision-induced dissociation. All the resulting ions are measured by
the mass spectrometer for mass/charge ratios. In the process of collision-induced dissociation, a peptide
bond at a random position is broken, and each molecule is fragmented into two complementary ions,
typically an N-terminal ion called b-ion and a C-terminal ion called y-ion.

Figure 1 shows the fragmentation of a doubly charged peptide sequence of n amino acids (NHHCHR1CO
– ¢ ¢ ¢ – NHCHRiCO – ¢ ¢ ¢ – NHCHRnCOOH). The ith peptide bond is broken and the peptide is frag-
mented into an N-terminal ion which corresponds to a charged pre� x subsequence (NHHCHR1CO – ¢ ¢ ¢ –
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326 CHEN ET AL.

FIG. 1. A doubly charged peptide molecule is fragmented into a b-ion and a y-ion.

NHCHRiCOC) and a C-terminal ion which corresponds to a charged suf� x subsequence (NHHCHRiC1CO
– ¢ ¢ ¢ – NHCHRC

n COOH). These two ions are complementary because joining them determines the original
peptide sequence. This dissociation process fragments a large number of molecules of the same peptide
sequence, and ideally, the resulting ions contain all possible pre� x subsequences and suf� x subsequences.
Table 1 shows all the resulting b-ions and y-ions from the dissociation of a peptide (R1 ¡ R2 ¡ R3). These
ions display a spectrum in the mass spectrometer, and each appears at the position of its mass because it
carries a C1 charge. All the pre� x (or suf� x) subsequences form a sequence ladder where two adjacent
sequences differ by one amino acid, and indeed, in the tandem mass spectrum, the mass difference between
two adjacent b-ions (or y-ions) equals the mass of that amino acid. Figure 2 shows a hypothetical tandem
mass spectrum of all the ions (including the parent ions) of a peptide SWR and the ladders formed by the
b-ions and the y-ions.

We de� ne an ideal tandem mass spectrum to be noise-free and containing only b- and y-ions, and every
mass peak has the same height (or abundance). The interpretation of an ideal spectrum only deals with
the following two factors: 1) it is unknown whether a mass peak (of some ion) corresponds to a pre� x
or a suf� x subsequence; 2) some ions may be lost in the experiments and the corresponding mass peaks
disappear in the spectrum. The ideal de novo peptide sequencing problem takes an input of a subset of
pre� x and suf� x masses of an unknown target peptide sequence P and asks for a peptide sequence Q such
that a subset of its pre� xes and suf� xes gives the same input masses. Note that, as expected, Q may or
may not be the same as P , depending on the input data and the quality.

In practice, noise and other factors can affect a tandem mass spectrum. An ion may display two or three
different mass peaks because of the distribution of two isotopic carbons, C12 and C13, in the molecules.
An ion may lose a water or an ammonia molecule and display a different mass peak from its normal one.
The fragmentation may result in some other ion types such as a- and z-ions. Every mass peak displays a
height that is proportional to the number of molecules of such an ion type. Therefore, the de novo peptide
sequencing problem is, given a de� ned correlation function, to � nd a peptide sequence whose hypothetical
pre� x and suf� x masses are optimally correlated to a tandem mass spectrum.

A special case of the peptide sequencing problem is the amino acid modi� cation. An amino acid at an
unknown location on the target peptide sequence is modi� ed and its mass is changed. This modi� cation

Table 1. Ionization and Fragmentation of
Peptide (R1 ¡ R2 ¡ R3)

B-ion sequences Y-ion sequences

b1 (R1)C y2 (R2 ¡ R3)C

b2 (R1 ¡ R2)C y1 (R3)C
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DE NOVO PEPTIDE SEQUENCING 327

FIG. 2. Hypothetical tandem mass spectrum of peptide SWR.

appears in every molecule of this peptide, and all the ions containing the modi� ed amino acid display
different mass peaks from the unmodi� ed ions. Finding this modi� ed amino acid is of great interest in
biology because modi� cations are usually associated with protein functions.

Several computer programs such as SEQUEST (Eng et al., 1994), Mascot (Perkins et al., 1999), and
ProteinProspector (Clauser et al., 1999), have been designed to interpret the tandem mass spectral data.
A typical program like SEQUEST correlates peptide sequences in a protein database with the tandem
mass spectrum. Peptide sequences in a database of over 300,000 proteins are converted into hypothetical
tandem mass spectra, which are matched against the target spectrum using some correlation functions.
The sequences with top correlation scores are reported. This approach gives an accurate identi� cation, but
cannot handle the peptides that are not in the database. Pruning techniques have been applied in some
programs to screen the peptides before matching the database but at the cost of reduced accuracy.

An alternative approach (Dancik et al., 1999 and Taylor and Johnson, 1997) is de novo peptide sequenc-
ing. Some candidate peptide sequences are extracted from the spectral data before they are validated in
the database. First, the spectral data is transformed to a directed acyclic graph, called a spectrum graph,
where 1) a node corresponds to a mass peak and an edge, labeled by some amino acids, connects two
nodes that differ by the total mass of the amino acids in the label; 2) a mass peak is transformed into
several nodes in the graph, and each node represents a possible pre� x subsequence (ion) for the peak.
Then, an algorithm is called to � nd the highest-scoring path in the graph or all paths with scores higher
than some threshold. The concatenation of edge labels in a path gives one or multiple candidate peptide
sequences. However, the well-known algorithms (Cormen et al., 1990) for � nding the longest path tend to
include multiple nodes associated with the same mass peak. This interprets a mass peak with multiple ions
of a peptide sequence, which is rare in practice. This paper provides ef� cient sequencing algorithms for a
general interpretation of the data by restricting a path to contain at most one node for each mass peak.

For this purpose, we introduce the notion of an NC-spectrum graph G D .V ; E/ for a given tandem
mass spectrum, where V D 2k C2 and k is the number of mass peaks in the spectrum. In conjunction with
this graph, we develop a dynamic programming approach to obtain the following results for previously
open problems:

² The de novo peptide sequencing problem can be solved in O.jV jjEj/ time and O.jV j2/ space, and in
O.jV j C jEj/ time and O.jV j/ space if the given spectrum is ideal.

² A modi� ed amino acid can be found in O.jV jjEj/ time.

Our paper is organized as follows. Section 2 formally de� nes the NC-spectrum graph and the peptide
sequencing problem. Section 3 describes the dynamic programming algorithms for the peptide sequencing
problem for three kinds of spectra: ideal spectra, noisy spectra, and spectra with a modi� ed amino acid.
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328 CHEN ET AL.

Section 4 reports the implementation and testing of our algorithms on experimental data. Section 5 mentions
further research.

2. SPECTRUM GRAPHS AND THE PEPTIDE SEQUENCING PROBLEM

An amino acid unit in a peptide is called a residue. In forming the peptide bonds, an ionized amino acid
molecule loses an oxygen and two hydrogens, so the mass of a residue is approximately 18 Daltons less
than the mass of an ionized amino acid molecule. The structures of both molecules are shown in Figure 3.
In this paper, we use the amino acid mass referring to the residue mass.

Given the mass W of a target peptide sequence P , k ions I1; : : : ; Ik of P , and the masses w1; : : : ; wk

of these ions, we create an NC-spectrum graph G D .V ; E/ as follows.
For each Ij , it is unknown whether it is an N-terminal ion or a C-terminal ion. If Ij is a C-terminal ion,

it has a complementary N-terminal ion, denoted as I c
j , with a mass of W ¡ .wj ¡ 2/, where the 2-Dalton

mass is from the two extra hydrogens of the y-ion shown in Fig. 1. Therefore, we create a pair of nodes
Nj and Cj to represent Ij and I c

j , one of which must be an N-terminal ion. We also create two auxiliary
nodes N0 and C0 to represent the zero mass and the total mass of all amino acids of P , respectively.
Let V D fN0; N1; : : : ; Nk; C0; C1; : : : ; Ckg. Each node x 2 V is placed at a real line, and its coordinate
cord(x) is the total mass of its amino acids, i.e.,

cord.x/ D

8
>><

>>:

0 x D N0I
W ¡ 18 x D C0I
wj ¡ 1 x D Nj for j D 1; : : : ; kI
W ¡ wj C 1 x D Cj for j D 1; : : : ; k:

This coordinate scheme is adopted for the following reasons. An N-terminal b-ion has an extra hydrogen
(approximately 1 Dalton), so cord.Nj / D wj ¡ 1 and cord.Cj / D .W ¡ .wj ¡ 2// ¡ 1 D W ¡ wj C 1; and
the full peptide sequence of P has two extra hydrogens and one extra oxygen (approximately 16 Daltons),
so cord.C0/ D W ¡ 18. If cord.Ni/ D cord.Cj / for some i and j , Ii , and Ij are complementary, one of
them corresponds to a pre� x sequence and another corresponds to the complementary suf� x sequence. In
the spectrum graph, they are merged into one pair of nodes. We say that Nj and Cj are derived from Ij .
For convenience, for x and y 2 V , if cord.x/ < cord.y/, then we say x < y.

The edges of G are speci� ed as follows. For x and y 2 V , there is a directed edge from x to y, denoted
by (x; y) and E.x; y/ D 1, if the following conditions are satis� ed: 1) x and y are not derived from the
same Ij ; 2) x < y; and 3) cord(y) ¡ cord(x) equals the total mass of some amino acids. Figure 4 shows a
tandem mass spectrum and its corresponding NC-spectrum graph. In Figure 4, the path N0 ¡ C2 ¡ N1 ¡ C0

that contains exactly one of every pair of complementary nodes derived from the same ion corresponds to
the original peptide sequence SWR.

Since G is a directed graph along a line and all edges point to the right on the real line, we list the
nodes from left to right according to their coordinates as x0; x1; : : : ; xk; yk; : : : ; y1; y0, where xi and yi ,
1 · i · k, are complementary. In practice, a tandem mass spectrum may contain noise such as mass peaks
of other types of ions from the same peptide, mass peaks of ions from other peptides, and mass peaks of
unknown ions. A general way to deal with these situations is to use a prede� ned edge (and node) scoring

FIG. 3. (a) An ionized amino acid molecule and (b) a residue.
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DE NOVO PEPTIDE SEQUENCING 329

FIG. 4. A tandem mass spectrum and its corresponding NC-spectrum graph.

function s.¢/ such that nodes corresponding to high peaks and edges labeled with single amino acid receive
higher scores. We de� ne the score of a path to be the sum of the scores of the edges (and the nodes) on
the path. Therefore, we have the following.

De� nition 1. The peptide sequencing problem is, given an NC-spectrum graph G D .V; E/ and an
edge scoring function s.¢/, � nd a maximum score path from x0 to y0, such that at most one of xj and yj

for every 1 · j · k is on the path.

If the peptide sequence is known, we can identify the nodes of G corresponding to the pre� x subse-
quences of this peptide. These nodes form a directed path from x0 to y0. Generally, the mass of a pre� x
subsequence does not equal the mass of any suf� x subsequence, so the path contains at most one of xj

and yj for each j > 0. On the other hand, a satisfying directed path from x0 to y0 contains observed
pre� x subsequences. If each edge on the path is labeled with some amino acids, we can visit the edges on
the path from left to right and concatenate these amino acids to form one or multiple peptide sequences
that display the tandem mass spectrum. If an appropriate scoring function is given, � nding the maximum
score path is equivalent to � nding a peptide sequence that is optimally correlated to the spectrum.

Even if the mass of a pre� x subsequence coincidently equals the mass of a suf� x subsequence, which
means the directed path contains both xj and yj , we can remove either xj or yj from the path and form
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330 CHEN ET AL.

a new path corresponding to multiple peptide sequences which contain the real sequence. We call such a
directed path a feasible reconstruction of P or a feasible solution of G.

To construct the edges of G, we use a mass array A, which takes an input of mass m and returns 1
if m equals the total mass of some amino acids and 0 otherwise. Let h be the maximum mass under
construction. Let ± be the measurement precision for mass. Then, we have the following.

Theorem 1. Assume that we are given the maximum mass h and the mass precision ±.

1. The mass array A can be constructed in O
¡

h
±

¢
time.

2. Given a spectrum of k mass peaks, G can be constructed in O.k2/ time.

Proof. These statements are proved as follows.
Statement 1. Given a mass m, 0 < m · h, A[m] D 1 if and only if m equals one amino acid mass or

there exists an amino acid mass r < m such that A[m ¡ r] D 1. If A is computed in the order from A[0]
to A

£
h
±

¤
, each entry can be determined in constant time since there are only 20 amino acids and all the

previous entries have been determined. The total time is O
¡

h
±

¢
.

Statement 2. For any two nodes vi and vj of G, we create an edge for vi and vj , E.vi ; vj / D 1, if and
only if 0 < cord.vj / ¡ cord.vi/ < h and A[cord.vj / ¡ cord.vi/] D 1. There are a total of O.k2/ pairs of
nodes. With A, G can be constructed in O.k2/ time.

In current practice, ± D 0:2 Dalton, and h D 400 Daltons, roughly the total mass of four amino acids.
The ef� ciency of our algorithm will allow biologists to consider much larger h and much smaller ±.

3. ALGORITHMS FOR PEPTIDE SEQUENCING

An ideal tandem mass spectrum is noise-free and contains only b- and y-ions, and every mass peak
has the same height. This section starts with algorithms for ideal spectra in Section 3.1 and Section 3.2,
and then describes algorithms for noisy spectra in Section 3.3 and spectra with a modi� ed amino acid in
Section 3.4.

3.1. Algorithm for ideal peptide sequencing

Given an ideal spectrum, we want to � nd a peptide sequence such that every mass peak of the spectrum
matches with some b- or y-ion of the peptide. Therefore, we have the following.

De� nition 2. The ideal peptide sequencing problem is equivalent to the problem which, given G D
.V; E/, asks for a directed path from x0 to y0 which contains exactly one of xj and yj for each j > 0.

We list the nodes of G from left to right as x0; x1; : : : ; xk; yk; : : : ; y1; y0. Let M.i; j / be a two-
dimensional matrix with 0 · i; j · k. Let M.i; j/ D 1 if and only if in G there is a path L from
x0 to xi and a path R from yj to y0, such that L [ R contains exactly one of xp and yp for every
p 2 [1; i] [ [1; j ]. Denote the two paths L [ R as the LR paths for M.i; j / D 1. Let M.i; j/ D 0
otherwise. Table 2 shows the matrix M for the NC-spectrum graph in Figure 4.

Table 2. Matrix M for the
NC-Spectrum Graph in Fig. 4

M 0 1 2

0 1 0 0
1 1 0 1
2 1 0 0
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DE NOVO PEPTIDE SEQUENCING 331

Algorithm Compute-M(G)
1. Initialize M.0; 0/ D 1 and M.i; j/ D 0 for all i 6D 0 or j 6D 0;
2. Compute M.1; 0/ and M.0; 1/;
3. For j D 2 to k

4. For i D 0 to j ¡ 2
(a) if M.i; j ¡ 1/ D 1 and E.xi ; xj / D 1, then M.j; j ¡ 1/ D 1;
(b) if M.i; j ¡ 1/ D 1 and E.yj ; yj¡1/ D 1, then M.i; j/ D 1;
(c) if M.j ¡ 1; i/ D 1 and E.xj¡1; xj / D 1, then M.j; i/ D 1;
(d) if M.j ¡ 1; i/ D 1 and E.yj ; yi/ D 1, then M.j ¡ 1; j / D 1.

Theorem 2. The following statements hold.

1. Given G D .V ; E/, Algorithm Compute-M computes the matrix M in O.jV j2/ time.
2. Given G D .V ; E/ and M , a feasible solution of G can be found in O.jV j/ time.
3. Given G D .V ; E/, a feasible solution of G can be found in O.jV j2/ time and O.jV j2/ space.
4. Given G D .V; E/, all feasible solutions of G can be found in O.jV j2 CnjV j/ time and O.jV j2 CnjV j/

space, where n is the number of solutions.

Proof. These statements are proved as follows.
Statement 1. Without loss of generality, assume that i < j and M.i; j/ D 1. By de� nition, either xj¡1

or yj¡1 (but not both) must be on the LR paths for M.i; j/ D 1, and there exists a node yp such that
E.yj ; yp/ D 1 and M.i; p/ D 1. Thus either i D j ¡ 1 or p D j ¡ 1, corresponding to Steps 4(b) and 4(d)
respectively in the algorithm. A similar analysis holds for M.j; i/ D 1 and i < j in Steps 4(a) and 4(c).
Therefore, every entry in M is correctly computed in the algorithm. Note that jV j D 2k C 2 and Steps
4(a), 4(b), 4(c), and 4(d) take O.1/ time, and thus the total time is O.jV j2/.

Statement 2. Note that jV j D 2k C 2. Without loss of generality, assume that a feasible solution S

contains node xk . Then there exists some j < k, such that edge .xk; yj / 2 S and M.k; j / D 1. Therefore,
we search the nonzero entries in the last row of M and � nd a j that satis� es both M.k; j/ D 1 and
E.xk; yj / D 1. This takes O.jV j/ time. With M.k; j / D 1, we backtrack M to search the next edge of S

as follows. If j D k ¡ 1, the search starts from i D k ¡ 2 to 0 until both E.xi; xk/ D 1 and M.i; j / D 1 are
satis� ed; otherwise j < k ¡ 1, and then E.xk¡1; xk/ D 1 and M.k ¡ 1; j / D 1. We repeat this process to
� nd every edge of S. A similar process holds for feasible solutions that contain node yk . Using a common
data structure such as link lists or a two-dimensional matrix, this algorithm visits every node of G at most
once in the order form xk to x0 and from yk to y0 at a total cost of O.jV j/ time.

Statement 3. We compute M by means of Statement 1 and � nd a feasible solution by means of Statement
2. The total cost is O.jV j2/ time and O.jV j2/ space.

Statement 4. The proof is similar to that of Statement 2. For feasible solutions that contain node xk ,
we search every j that satis� es both M.k; j / D 1 and E.xk; yj / D 1, and each j corresponds to different
feasible solutions. For every M.k; j / D 1, we backtrack M to search the next edges as follows. If j D k¡1,
the search starts from i D k ¡ 2 to 0 to � nd every i that satis� es both E.xi ; xk/ D 1 and M.i; j / D 1;
otherwise j < k ¡ 1, and then E.xk¡1; xk/ D 1 and M.k ¡ 1; j / D 1. Every edge found in this process
corresponds to different feasible solutions. We repeat this process to � nd all feasible solutions that contain
node xk . A similar process holds for feasible solutions that contain node yk . Finding one feasible solution
costs O.jV j/ time and O.jV j/ space because the algorithm visits every node of G at most once for each
solution. Computing M and � nding n solutions cost O.jV j2 C njV j/ time and O.jV j2 C njV j/ space in
total.

3.2. An improved algorithm for ideal peptide sequencing

To improve the time and space complexities in Theorem 2, we encode M into two linear arrays. De� ne
an edge .xi ; yj / with 0 · i; j · k to be a cross edge and an edge .xi ; xj / or .yj ; yi/ with 0 · i < j · k

to be an inside edge. Let lce(z) be the length of the longest consecutive inside edges starting from node z;
i.e.,

»
lce.xi/ D j ¡ i if E.xi ; xiC1/ D : : : D E.xj¡1; xj / D 1 and .j D k or E.xj ; xjC1/ D 0/I
lce.yj / D j ¡ i if E.yj ; yj¡1/ D : : : D E.yiC1; yi/ D 1 and .i D 0 or E.yi ; yi¡1/ D 0/:
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Let dia(z) be two diagonals in M , where

8
<

:

dia.xj / D M.j; j ¡ 1/ for 0 < j · kI
dia.yj / D M.j ¡ 1; j / for 0 < j · kI
dia.x0/ D dia.y0/ D 1:

Lemma 3. Given lce(¢) and dia(¢), any entry of M can be computed in O.1/ time.

Proof. Without loss of generality, let the M.i; j/ be the entry we want to compute where 0 · i < j · k.
If i D j¡1, M.i; j/ D dia.yj / as de� ned; otherwise i < j¡1 and M.i; j / D 1 if and only if M.i; iC1/ D 1
and E.yj ; yj¡1/ D : : : D E.yiC2; yiC1/ D 1, which is equivalent to dia.yiC1/ D 1 and lce.yj / ¸ j ¡ i ¡ 1.
Thus both cases can be solved in O.1/ time.

Lemma 4. Given G D .V ; E/; lce.¢/ and dia.¢/ can be computed in O.jV j C jEj/ time.

Proof. We retrieve consecutive edges starting from yk , yk¡1; : : : ; until the � rst yp with p · k and
RE.yp; yp¡1/ D 0. Then we can � ll lce.yk/ D k ¡ p, lce.yk¡1/ D k ¡ p ¡ 1; : : :, and lce.yp/ D 0
immediately. Next, we start a new retrieving and � lling process from yp¡1, and repeat this until y0 is
visited. Eventually we retrieve O.k/ consecutive edges. A similar process can be applied to x. Using a
common graph data structure such link lists, a consecutive edge can be retrieved in constant time, and thus
lce(¢) can be computed in O.jV j/ time.

By de� nition, dia.xj / D M.j; j ¡ 1/ D 1 if and only if there exists some i with 0 · i < j ¡ 1,
M.i; j ¡1/ D 1 and E.xi ; xj / D 1. If we have computed dia.x0/; : : : ;dia.xj¡1/ and dia.yj¡1/; : : : ;dia.y0/,
then M.i; j ¡ 1/ can be computed in constant time by means of the proof in Lemma 3. To � nd the xi

for E.xi; xj / D 1, we can visit every inside edge that ends at xj . Thus dia.xj / can be computed and so
can dia.yj /. Therefore the computation of dia(¢) visits every inside edge exactly once, and the total time
is O.jV j C jEj/.

Theorem 5. Assume that G D .V ; E/ is given.

1. A feasible solution of G can be found in O.jV j C jEj/ time and O.jV j/ space.
2. All feasible solutions of G can be fond in O.njV j C jEj/ time and O.njV j/ space, where n is the

number of solutions.

Proof. These statements are proved as follows.
Statement 1. By Lemma 4, lce(¢) and dia(¢) can be computed in O.jV j C jEj/ time and O.jV j/ space.

By Lemma 3, the last row and the last column of M can be reconstructed from lce(¢) and dia(¢) in O.jV j/
time. By Theorem 2 and Lemma 3, a feasible solution of G can be found in O.jEj/ time. Therefore,
� nding a feasible solution takes O.jV j C jEj/ time and O.jV j/ space.

Statement 2. The proof is similar to the proof of Statement 4 in Theorem 2. Finding an additional
feasible solution takes O.jV j/ time and O.jV j/ space. Thus � nding n solutions takes O.njV j C jEj/ time
and O.njV j/ space.

A feasible solution of G is a path of k C 1 nodes and k edges, and therefore there must exist an
edge between any two nodes on the path by the edge transitive relation. This implies that there are at
least .k C 1/k=2 or O.jV j2/ edges in the graph. However, in practice, a threshold is usually set for the
maximum length (mass) of an edge, so the number of edges in G could be much smaller than O.jV j2/

and may actually equal O.jV j/ sometimes. Thus, Theorem 5 actually � nds a feasible solution in linear
time for a sparse graph G.

3.3. Algorithm for peptide sequencing

In practice, a tandem mass spectrum contains noise and other types of ions. This section describes an
algorithm for the peptide sequencing problem (De� nition 1). We � rst compute an NC-spectrum graph G

from this spectrum. Let s.¢/ be the edge scoring function for G. Let Q.i; j/ be a two-dimensional matrix
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with 0 · i; j · k. Q.i; j / > 0 if and only if in G, there is a path L from x0 to xi and a path R from yj

to y0, such that at most one of xp and yp is in L [ R for every p 2 [1; i] [ [1; j ]; Q.i; j/ D 0 otherwise.
If Q.i; j / > 0, Q.i; j / D maxL;Rfs.L/ C s.R/g, the maximum score among all L and R pairs. Table 3
shows the matrix Q for the NC-spectrum graph in Figure 4 using a scoring function s.e/ D 1 for every
edge e 2 G.

Algorithm Compute-Q(G)
1. Initialize Q.i; j/ D 0 for all 0 · i; j · k;
2. For j D 1 to k

3. If E.yj ; y0/ D 1, then Q.0; j/ D maxfQ.0; j/; s.yj ; y0/g;
4. If E.x0; xj / D 1, then Q.j; 0/ D maxfQ.j; 0/; s.x0; xj /g;
5. For i D 1 to j ¡ 1

(a) For every E.yj ; yp/ D 1 and Q.i; p/ > 0, Q.i; j/ D maxfQ.i; j/; Q.i; p/ C s.yj ; yp/g;
(b) For every E.xp; xj / D 1 and Q.p; i/ > 0, Q.j; i/ D maxfQ.j; i/; Q.p; i/ C s.xp; xj /g.

Theorem 6. The following statements hold.

1. Given G D .V ; E/; Algorithm Compute-Q computes the matrix Q in O.jV jjEj/ time.
2. Given G D .V ; E/, a feasible solution of G can be found in O.jV jjEj/ time and O.jV j2/ space.

Proof. These statements are proved as follows.
Statement 1. Let L and R be the maximum score paths that correspond to Q.i; j / > 0 for i < j . By

de� nition, after removing node yj from R, L[ R ¡ fyj g contains at most one of xq and yq for all 1 · q ·
j ¡ 1. Let .yj ; yp/ 2 R such that Q.i; j/ D Q.i; p/ C s.yj ; yp/ corresponding to Steps 3 and 5(a) in the
algorithm. A similar analysis holds for Q.j; i/ D 1 and i < j in Steps 4 and 5(b). The loop at Step 2 uses the
previously computed maximum scores Q.0; j ¡1/; : : : ; Q.j ¡1; j ¡1/ and Q.j ¡1; 0/; : : : ; Q.j ¡1; j ¡1/

to � ll up the maximum scores in Q.0; j/; : : : ; Q.j; j/ and Q.j; 0/ : : : ; Q.j; j/. Thus every entry in Q is
correctly computed in a correct order. For every j , Steps 5(a) and 5(b) visit every edge of G at most once,
so the total time is O.jV jjEj/.

Statement 2. Algorithm Compute-Q computes Q in O.jV jjEj/ time and O.jV j2/ space. For every i and
j , if Q.i; j / > 0 and E.xi ; yj / D 1, we compute the sum Q.i; j/ C s.xi ; yj /. Let Q.p; q/ C s.xp; yq/ be
the maximum value, and we can backtrack Q.p; q/ to � nd all the edges of the feasible solution. The total
cost is O.jV jjEj/ time and O.jV j2/ space.

3.4. Algorithm for one-amino acid modi� cation

Amino acid modi� cations are related to protein functions. There are a few hundred known modi� cations.
For example, some proteins are active when some amino acid is phosphorylated but inactive when it is
dephosphorylated. In most experiments, a protein is digested into multiple peptides, and most peptides
have at most one modi� ed amino acid. This section discusses how to � nd one modi� ed amino acid from
a tandem mass spectrum. For the simplicity of our explanation, we assume that a given tandem mass
spectrum is ideal. The methodology works for a noisy spectrum too.

We make two assumptions about the modi� cation: 1) the modi� ed mass is unknown and is not equal
to the total mass of any number of amino acids; otherwise, it is information-theoretically impossible to
detect an amino acid modi� cation from tandem mass spectral data; 2) there is no feasible reconstruction
for the given spectral data because a modi� cation is rare if there is a feasible solution.

Table 3. Matrix Q for the
NC-Spectrum Graph in Fig. 4

Q 0 1 2

0 0 0 0
1 1 0 2
2 2 0 0
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De� nition 3. The one-amino acid modi� cation problem is equivalent to the problem which, given
G D .V ; E/, asks for two nodes vi and vj , such that E.vi ; vj / D 0 but adding the edge .vi; vj / to G

creates a feasible solution that contains this edge.

Suppose the peptide sequence and the position of the modi� cation are given. The modi� ed mass can be
determined by the difference between the experimentally measured peptide mass and the unmodi� ed mass.
Thus, in the NC-spectrum graph G, we can identify the nodes corresponding to the pre� x subsequences,
among which there is only one pair of adjacent nodes vi and vj , such that E.vi; vj / D 0 and node vj

contains the modi� ed amino acid. By adding the edge (vi; vj ) to G, these nodes form a directed path from
x0 to y0. This path is a feasible solution.

On the contrary, suppose adding an edge .vi; vj / to G creates a feasible solution that contains this edge.
Edge .vi ; vj / is labeled by ® indicating a modi� ed amino acid. If each edge on the path corresponds to
one amino acid, we can visit the edges on the path from left to right and concatenate these amino acids
to form a peptide sequence that display the tandem mass spectrum. If some edge corresponds to multiple
amino acids, we obtain more than one peptide sequence. With additional information, such as a protein
database or a modi� cation database, we can predict the original amino acid(s) for ®.

Let G D .V ; E/ be an NC-spectrum graph with nodes from left to right as x0; : : : ; xk; yk; : : : ; y0. Let
N.i; j / be a two-dimensional matrix with 0 · i; j · k, where N.i; j/ D 1 if and only if there is a path
from xi to yj which contains exactly one of xp and yp for every p 2 [i; k] [ [j; k]. Let N.i; j/ D 0
otherwise. Table 4 shows the matrix N for the NC-spectrum graph in Figure 4.

Algorithm Compute-N(G)
1. Initialize N.i; j/ D 0 for all i and j ;
2. Compute N.k; k ¡ 1/ and N.k ¡ 1; k/;
3. For j D k ¡ 2 to 0
4. For i D k to j C 2

(a) if N.i; j C 1/ D 1 and E.xj ; xi/ D 1, then N.j; j C 1/ D 1;
(b) if N.i; j C 1/ D 1 and E.yjC1; yj / D 1, then N.i; j/ D 1;
(c) if N.j C 1; i/ D 1 and E.xj ; xjC1/ D 1, then N.j; i/ D 1;
(d) if N.j C 1; i/ D 1 and E.yi; yjC1/ D 1, then N.j C 1; j/ D 1.

Theorem 7. The following statements hold.

1. Given G D .V ; E/, Algorithm Compute-N computes the matrix N in O.jV j2/ time.
2. Given G D .V; E/, all possible amino acid modi� cations can be found in O.jV jjEj/ time and O.jV j2/

space.

Proof. These statements are proved as follows.
Statement 1. Let L and R be the paths that correspond to N.i; j/ D 1 and i > j . By de� nition, after

removing node yj from R, L [ R ¡ fyj g contains exactly one of xq and yq for all j C 1 · q · k.
Let .yp; yj / 2 R, then N.i; p/ D 1. Therefore, either i D j C 1 or p D j C 1, corresponding to Step
4(d) or 4(b) respectively in the algorithm. A similar analysis holds for N.j; i/ D 1 and i > j in Steps
4(a) and 4(c), and thus every entry in N is correctly computed in the algorithm. The loop at Step 3 uses
previously computed N.k; j C 1/; : : : ; N.j C 1; j C 1/ and N.j C 1; k/; : : : ; M.j C 1; j C 1/ to � ll up

Table 4. Matrix N for the
NC-Spectrum Graph in Fig. 4

N 2 1 0

2 0 1 0
1 1 0 1
0 1 1 0
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N.k; j /; : : : ; N.j; j / and N.j; k/; : : : ; N.j; j /. Thus the algorithm computes N in a correct order. Note
that jV j D 2k C 2 and Steps 4(a), 4(b), 4(c), and 4(d) take O.1/ time, and thus the total time is O.jV j2/.

Statement 2. Let M and N be two matrices for G computed from Algorithm Compute-M and Algorithm
Compute-N, respectively, at a total cost of O.jV j2/ time and O.jV j2/ space. Without loss of generality,
let the modi� cation be between two pre� x nodes xi and xj with 0 · i < j · k and E.xi; xj / D 0.
All the pre� x nodes to the right of xj have the same mass offset from the normal locations because the
corresponding sequences contain the modi� ed amino acid. By adding a new edge .xi ; xj / to G, we create
a feasible solution S that contains this edge: 1) If i C 1 < j , then yiC1 2 S, and thus M.i; i C 1/ D 1 and
N.j; i C 1/ D 1. Finding all such xi and xj pairs takes O.jV j2/ time because there are O.k2/ possible
combinations of i and j . 2) If 1 < iC1 D j < k, then there exists an edge .yq ; yp/ 2 S and q > j > i > p,
such that E.yq ; yp/ D 1 and M.i; p/ D 1 and N.j; q/ D 1. There are at most O.jEj/ edges that satisfy
E.yq ; yp/ D 1, and checking O.jV j/ possible i C 1 D j costs O.jV jjEj/ time. 3) If 0 D i D j ¡ 1, then
there exists an edge .yq ; y0/ 2 S and q > j > i, such that E.yq ; y0/ D 1 and N.1; q/ D 1, which can
be examined in O.jV j/ time. 4) If i C 1 D j D k, then there exists an edge .xk; yp/ 2 S and j > i > p,
such that E.xk; yp/ D 1 and M.k ¡ 1; p/ D 1, which can be examined in O.jV j/ time. The case that the
modi� cation is between two pre� x nodes xk and yj can be examined for E.xk; yj / D 0 and M.k; j / D 1
in O.jV j/ time. Thus the total complexity is O.jV jjEj/ time and O.jV j2/ space.

Note that the condition in Theorem 7 does not require that all ions in the spectrum are observed. If
some ions are lost but their complementary ions appear, G still contains all pre� x and suf� x nodes of the
target sequence. Furthermore, if G does not contain all pre� x and suf� x nodes because of many missing
ions, this algorithm still � nds the position of the modi� cation but the result is affected by the quality of
the data.

4. EXPERIMENTAL RESULTS

We have presented algorithms for reconstructing peptide sequences from tandem mass spectral data with
noise and loss of ions. This section reports experimental studies which focus on cases of b-ions losing a
water or ammonia molecule and cases of isotopic varieties for an ion. We treat the rare occurrence such
as y-ions losing a water or ammonia molecule, b-ions losing two water or ammonia molecules, and other
types of ions, as noise and apply Algorithm Compute-Q to reconstruct peptide sequences.

Isotopic ions come from isotopic carbons to C12 and C13. An ion usually has a couple of isotopic forms,
and the mass difference between two isotopic ions is generally one or two Daltons. Their abundance re� ects
the binomial distribution between C12 and C13. This distribution can be used for identi� cation. Isotopic
ions can be merged to one ion of either the highest intensity or a new mass.

It is very common for a b-ion to lose a water or ammonia molecule. In the construction of an NC-
spectrum graph, we add two types of edges when 1) the distance between two nodes equals the total mass
of some amino acids plus the mass of one water molecule and 2) the distance between two nodes equals
the total mass of some amino acids minus the mass of one water molecule. The � rst type includes the case
that the distance equals the mass of exactly one water molecule. Therefore, a feasible path may contain
edges of these two types, but the number of the � rst type of edges should equal the number of the second
type edges, so the net number of water molecules on the path equals zero. The scording function for each
edge is based on the abundance of two nodes and the error from a standard mass of some amino acids.
We have implemented Algorithm Compute-Q and tested it on the data generated by the following process:

The Chicken Ovalbumin proteins were digested with trypsin in 100 mM ammonium bicarbonate buffer pH
8 for 18 hours at 37±C. Then 100 ¹` are injected in acetonitrile into a reverse phase HPLC interfaced with
a Finnigan LCQ ESI-MS/MS mass spectrometer. A 1% to 50% acetonitrile 0.1%TFA linear gradient was
executed over 60 minutes.

Figure 5 shows one of our prediction results. The ions labeled in the spectrum were identi� ed suc-
cessfully. We use a resolution of 1.0 Dalton and a relative-abundance threshold of 5.0 in our program.
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FIG. 5. Raw tandem mass spectrum and predicted ions of the Chicken Ovalbumin peptide GGLEPINFQTAADQAR.
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5. FURTHER RESEARCH

We are working on a generalized scoring function which gives the best prediction, and the cases of
multiple peptides.
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